Resolvent Estimates Related with a Class of Dispersive Equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolvent Estimates Related with a Class of Dispersive Equations

We present a simple proof of the resolvent estimates of elliptic Fourier multipliers on the Euclidean space, and apply them to the analysis of time-global and spatially-local smoothing estimates of a class of dispersive equations. For this purpose we study in detail the properties of the restriction of Fourier transform on the unit cotangent sphere associated with the symbols of multipliers.

متن کامل

Comparison of Estimates for Dispersive Equations

This paper describes a new comparison principle that can be used for the comparison of space-time estimates for dispersive equations. In particular, results are applied to the global smoothing estimates for several classes of dispersive partial differential equations.

متن کامل

Resolvent Estimates with Mild Trapping

We discuss recent progress in understanding the effects of certain trapping geometries on cut-off resolvent estimates, and thus on the qualititative behavior of linear evolution equations. We focus on trapping that is unstable, so that strong resolvent estimates hold on the real axis, and large resonance-free regions can be shown to exist beyond it.

متن کامل

Dispersive and Strichartz estimates for hyperbolic equations with constant coefficients

Dispersive and Strichartz estimates for solutions to general strictly hyperbolic partial differential equations with constant coefficients are considered. The global time decay estimates of Lp−Lq norms of propagators are obtained, and it is shown how the time decay rates depend on the geometry of the problem. The frequency space is separated in several zones each giving a certain decay rate. Ge...

متن کامل

Wave Breaking in a Class of Nonlocal Dispersive Wave Equations

The Korteweg de Vries (KdV) equation is well known as an approximation model for small amplitude and long waves in different physical contexts, but wave breaking phenomena related to short wavelengths are not captured in. In this work we consider a class of nonlocal dispersive wave equations which also incorporate physics of short wavelength scales. The model is identified by a renormalization ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2008

ISSN: 1069-5869,1531-5851

DOI: 10.1007/s00041-008-9008-2